Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Mathematics in Industry ; 39:535-541, 2022.
Article in English | Scopus | ID: covidwho-2157977

ABSTRACT

A modelling approach is proposed to study ozone distribution and destruction in indoor spaces. The level of ozone gas concentration in the air, confined within an indoor space during an ozone-based disinfection process, was modelled. The emission and removal of ozone from the air volume were carried out using a generator located in the middle of the room. The computational fluid dynamics (CFD) model proposed accounts for ozone generation and decay kinetics, and buoyancy variations in the airflow. This framework was validated against experimental measurements at different locations in the room during the disinfection cycle. The model was then applied to a more challenging environment and demonstrated the suitability of ozone circulation as a disinfection process. The study also highlights the need for a well-controlled ozone removal process. © 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.

2.
International Journal of Numerical Methods for Heat and Fluid Flow ; 2021.
Article in English | Scopus | ID: covidwho-1246880

ABSTRACT

Purpose: A novel modelling approach is proposed to study ozone distribution and destruction in indoor spaces. The level of ozone gas concentration in the air, confined within an indoor space during an ozone-based disinfection process, is analysed. The purpose of this work is to investigate how ozone is distributed in time within an enclosed space. Design/methodology/approach: A computational methodology for predicting the space- and time-dependent ozone concentration within the room across the consecutive steps of the disinfection process (generation, dwelling and destruction modes) is proposed. The emission and removal of ozone from the air volume are possible by means of a generator located in the middle of the room. This model also accounts for ozone reactions and decay kinetics, and gravity effect on the air. Finding: This work is validated against experimental measurements at different locations in the room during the disinfection cycle. The numerical results are in good agreement with the experimental data. This comparison proves that the presented methodology is able to provide accurate predictions of the time evolution of ozone concentration at different locations of the enclosed space. Originality/value: This study introduces a novel computational methodology describing solute transport by turbulent flow for predicting the level of ozone concentration within a closed room during a COVID-19 disinfection process. A parametric study is carried out to evaluate the impact of system settings on the time variation of ozone concentration within the space considered. © 2021, Emerald Publishing Limited.

SELECTION OF CITATIONS
SEARCH DETAIL